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Thermal fluctuations of the shapes of droplets in dense and compressed emulsions
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We generalize the theory of diffusing-wave spectroscopy (DWS) to include the effects of fluctuations of
the amplitudes of the scattered fields. Thus DWS can be used to probe the internal dynamics of flexible
particles. We study the thermally induced shape fluctuations of monodisperse emulsion droplets as a
function of the droplet volume fraction ¢. We find that a droplet’s mean-squared deviation from spheri-
cal shape increases with ¢, while the characteristic rate of relaxation of the shape deformations decreases
with ¢. Our generalization of the theory of DWS allows us to measure the autocorrelation function of
the fluctuating amplitude of the field scattered from a droplet. We use fluid dynamics and scattering
theory to calculate this autocorrelation function theoretically for an isolated droplet. The significant
contribution of many independent modes of deformation results in a distinctly nonexponential relaxa-
tion. The measured behavior agrees with the theory as ¢ approaches zero. At higher values of ¢
throughout the range of colloidal liquids we find a surprising scaling behavior, which implies that parti-
cle interactions bring about the enhancement and slowing down of shape fluctuations without altering
the spectrum of excited deformation modes. We relate the form of the scaling function to the particle
radial distribution function. In “compressed” emulsions with ¢ as high as 0.8, shape fluctuations may be
the only dynamical behavior that can occur. We suggest that in these systems the amplitude of the shape
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fluctuations is related to the emulsion’s elastic modulus.

PACS number(s): 68.10.—m, 82.70.Kjj, 05.40.+j, 47.55.Dz

I. INTRODUCTION

Dispersions of one liquid in another immiscible liquid
are called emulsions. Emulsions have long been of great
practical interest; typical uses include foods, cosmetics,
pharmaceuticals, and agricultural products [1,2]. In
most emulsions, the sizes of the droplets of the dispersed
phase range from submicrometer to several micrometers.
In contrast to microemulsions which are thermodynami-
cally stable, emulsions are inherently unstable. However,
by appropriately choosing the surfactant, which adsorbs
on the interface between the two immiscible liquids, and
stabilizes the droplets, emulsions can be kinetically stable
nearly indefinitely, allowing their properties to be stud-
ied.

Emulsions exhibit many properties similar to those of
dispersions of solid particles. The droplets of the
dispersed phase execute Brownian motion in the fluid and
the viscosity of the dispersion increases with their volume
fraction. However, the physical properties of the inter-
face are quite different; liquid droplets are flexible and
their interfaces are therefore subject to thermal fluctua-
tions. As a result, the shape of the droplets fluctuates
and is itself a dynamic variable. The extra degree of free-
dom introduced by thermal shape fluctuations may have
significant consequences for the properties of the emul-
sion; in particular, as the volume fraction ¢ is increased,
the interaction between droplets may change because of
this extra degree of freedom, and this may be reflected in
the macroscopic properties of the emulsion. Moreover,
the physical properties of the interfaces directly impact
the formation and stability of an emulsion. Thus to fully
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explore the differences between dispersions of solid parti-
cles and liquid droplets requires the study of the shape
fluctuations of the emulsion droplets. This may lead to
an improved understanding of the stability and rheologi-
cal properties of emulsions.

Thermally induced fluctuations on interfaces between
two fluids are the well known capillary waves. The am-
plitude of these capillary waves is controlled by the sur-
face tension between the ﬂyids, I', and is typically very
small, of the order of 10 A for the commonly encoun-
tered values of the surface tension. Nevertheless, for flat
interfaces capillary waves have been observed using both
light [3] and x-ray scattering [4]. Thermally excited
capillary waves on the interface of liquid droplets are
much more difficult to observe because of the more com-
plex geometry and the possibility that the interfacial fluc-
tuations are coupled to other degrees of freedom, such as
the translational motion of the droplets. However,
thermal interfacial fluctuations of dispersions of other
flexible particles have been observed; for example, shape
fluctuations of micelles and microemulsions have been
studied with neutron spin echo measurements [5,6], while
those of liquid membranes have been observed with x-ray
scattering [7] and those of vesicles have been studied with
direct space imaging [8]. These systems share a number
of distinct features. They are all suspensions of self-
assembled structures. As a result, the interfacial tension
is essentially zero, so that shape fluctuations are typically
much larger, and thus easier to observe. These fluctua-
tions are controlled by the interfacial rigidity or bending
energy rather than by interfacial tension; consequently,
the structures fluctuate about nonspherical mean shapes.

6289 ©1995 The American Physical Society



6290

Typically one has to treat these dynamics phenomenolog-
ically by defining a free energy of bending. Moreover,
these structures themselves have finite lifetimes, so the
dynamics of these systems can include the creation and
destruction of the constituent structures. Each system
exists only over certain ranges of dispersed phase and sur-
factant concentrations, so that the full range of
dispersed-phase volume fraction is not accessible for
study. By contrast, the constituent particles of an emul-
sion are fluid droplets with a spherical mean shape con-
trolled by the surface tension. The relaxation of the
shape fluctuations can be predicted by hydrodynamics;
the value of the interfacial tension I' can be determined
from macroscopic measurements. Moreover, the volume
fraction of the dispersed phase can be varied continuous-
ly from zero to almost 1, allowing the volume-fraction-
dependent interactions to be studied. Thus emulsions are
a useful model system for studying shape fluctuations of
dispersions of flexible particles.

Despite the potential interest and importance in study-
ing the shape fluctuations of emulsion droplets, there are
significant experimental difficulties, which have prevent-
ed their observation, until recently two breakthroughs re-
moved obstacles that have previously stood in the way of
our observing and understanding the shape fluctuations
of droplets in emulsions. The first obstacle is the require-
ment of monodisperse emulsion droplets; since the shape
fluctuations and their dynamics depend on droplet size, a
polydisperse emulsion would preclude any quantitative
theoretical analysis. The second major obstacle is the
very small amplitude and the rapid relaxation of thermal
shape fluctuations of micrometer-sized liquid droplets
whose shape is controlled by interfacial tension. The ex-
tra surface area created by thermal deformations from a
spherical shape is AA=kzgT /I, where kp is
Boltzmann’s constant and 7 is the temperature. For a
typical interfacial tension of I'==10 dyn/cm, this extra
surface area is only about 40 A2 If the radius of the
droplet is R =1 um, the extra surface area corresponds to
a relative variance from the mean spherical shape of only
~1077. Moreover, the relaxation time 7 of these fluctua-
tions is also very short. If the viscosity of the liquid
comprising the drop is much greater than that of the con-
tinuous phase, the relaxation time is given by r=R 7 /T
for =10 cP, 7=~107% sec. The combination of the very
short time scale and very small amplitude of the thermal
fluctuations of emulsion droplets presents an experimen-
tal challenge to their observation.

In this paper we present a detailed study of the
thermally induced shape fluctuations of emulsion drop-
lets. We overcome the two major experimental obstacles;
we exploit a recently developed purification technique to
obtain the requisite monodisperse droplets, and we gen-
eralize diffusing-wave spectroscopy (DWS) to probe the
minute amplitude of the shape fluctuations. Diffusing-
wave spectroscopy extends dynamic light scattering
(DLS) to the high multiple scattering limit [9], and
probes dynamics on length scales much shorter than the
wavelength of the incident light, A. Several detailed dis-
cussions about the theoretical underpinnings of DWS
have recently been published [10,11]. To study shape
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fluctuations, we generalize the theory of DWS to account
for the fluctuations in the scattering amplitude of each
droplet that result from the fluctuations in its shape; this
generalization can also apply more broadly to other kinds
of fluctuations in the scattering amplitude. We analyze
the dynamics of thermally excited shape fluctuations us-
ing a series expansion in spherical harmonics of shapes
that differ only slightly from a sphere. Starting from the
surface potential energy governing the dynamics, we
compute the amplitudes and relaxation times of thermal-
ly induced shape fluctuations controlled by surface ten-
sion. The experimental data from DWS measurements
are inverted and analyzed with the generalized theory,
enabling us to clearly resolve the shape fluctuations. Ex-
cellent agreement between our experimental data and
theoretical prediction is found in the limit of low droplet
volume fraction ¢. Moreover, for the data at higher ¢, a
surprising scaling behavior is found enabling the data for
all volume fractions over the range of liquidlike emul-
sions to be collapsed onto the curve predicted for low ¢.
We find that the characteristic decay rate of the shape
fluctuations decreases linearly with increasing ¢, while
their amplitude increases. We discuss the possible origin
of this behavior. Shape fluctuations persist even in
compressed emulsions, i.e., emulsions with ¢ above hard-
sphere close-packing values. We give a more qualitative
discussion of their behavior.

The remainder of this paper is arranged as follows. In
the next section, we generalize the theory for DWS by in-
cluding the consequences of fluctuations of the scattering
amplitude in the calculation of the temporal correlation
function of the scattered electric field. In Sec. III, we an-
alyze the scattering amplitude fluctuations that are
caused by thermally induced shape fluctuations of parti-
cles whose shape is controlled by surface tension. Section
IV contains a brief description of the preparation of
monodisperse emulsions and the experimental details of
the DWS measurements. In Sec. V, we present our ex-
perimental results. The consequences of the interactions
between droplets are discussed and a simple model is pro-
posed to attempt to interpret the volume fraction depen-
dence. Concluding remarks are presented in Sec. VI.

II. DIFFUSING-WAVE SPECTROSCOPY
WITH FORM FACTOR FLUCTUATIONS

In order to interpret quantitatively any results ob-
tained with a DWS experiment, we must calculate the
temporal autocorrelation function of intensity fluctua-
tions of the scattered light. For all DWS experiments
this is calculated by dividing the photons into separate,
diffusive paths, each containing a large number of scatter-
ing events. The probability that a photon will follow a
path of length s is determined through the use of the
diffusion equation for the light solved for the experimen-
tal geometry. The correlation function for each such
path is calculated by assuming that the path is comprised
of a sequence of n =s /I scattering events, where [/ is the
scattering mean free path. Since n is typically large, each
scattering event is assumed to be independent, and thus
may be treated as the average scattering event; the aver-
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age is taken over all possible scattering wave vectors q.
To utilize the diffusion approximation for the transport
of the light, the number of scattering events must be ex-
pressed in terms of the transport mean free path /*, the
only length scale appropriate for diffusive light. The to-
tal correlation function is determined by summing the
contributions of all possible paths, weighted by their
probabilities. If the positions of the scattering particles
in each path are completely uncorrelated, we need to con-
sider only the contributions of individual paths; these can
be added, assuming that all interference that contributes
to the final signal comes only outside the sample, at the
detector. If the scattering from some of the particles is
strongly correlated, we need to consider the possible
correlations of different scattering particles; this has been
done in the case of scattering from solid sphere disper-
sions [12-15].

All these analyses of the DWS correlation functions as-
sume that the fluctuations arise exclusively from the
translational motion of the scatterers. This results in
fluctuations of the phase of the light, which are detected
through the interference with the light from other paths.
To incorporate the effects of shape fluctuations, we must
also allow the scattering intensity from each particle to
fluctuate; this will result in intensity fluctuations that
occur independently from any phase fluctuations. Thus
the intensity of the light scattered from a suspension of
droplets fluctuates not only because of the fluctuating
phase interferences among the fields scattered by pairs of
droplets as they execute relative translational motions,
but also because of the fluctuating amplitude of the field
scattered by each individual droplet. The time-dependent
amplitudes of the scattered fields reflect the shape fluc-
tuations. To account for these shape fluctuations, we as-
sume that, aside from constants which disappear through
later normalization, the field scattered from a liquid
droplet can be written as

E;(g,1)=[b;(q)+Ab;(g,t)]exp{iq-r;(1)} . (1)

Here q is the scattering wave vector, r;(¢) is the position
of the center of mass of droplet i at time ¢, b;(g) is the
average field amplitude from an individual scatterer, and
Ab;(q,t) is the fluctuating part of the amplitude which
depends on the instantaneous geometry of the scatterer.

The contribution from each independent scattering
event in a DWS experiment can be expressed in terms of
the dynamic structure factor, to reflect the correlations of
particles inherent in a concentrated suspension [12-15].
Here we must generalize the expression given there to in-
clude the fluctuating portion of the scattering amplitude.
Our goal is to obtain an expression for g}(z), the correla-
tion function of the field scattered by a path with »n
scattering events, where we have recast the contribution
of the amplitude fluctuations in the same functional form
as the contribution of translational motions. This will al-
low us to adopt directly all the formalism for construct-
ing the full correlation function in terms of the diffusion
approximation for the transport of the light. Thus the
autocorrelation function of the scattered field when only
single scattering events occur is
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<E*(q,0)E<q,z))=<2 S [b;(q)+Ab;(g,0)]
i
X[b;(q)+Ab;(g,t)]
xeiq~[rj(t)—ri(0)]> 2)

For monodisperse particles the average scattering ampli-
tudes are the same, so that b;(q)=b;(q)=b(q). Further-
more, we assume that the fluctuating scattered amplitude
from one drop is uncorrelated with that of other drops,
or with the average amplitude. Thus,

(bi(q)Ab;(g,1)) =0, (3a)
(Ab;(¢,0)Ab;(g,1))=0, i#j, (3b)
Ab,;(q,0)Ab,(g,t)) =AF(q,1) , (3c)

where AF(q,t) is the fluctuating portion of the scatterer
form factor. Since b;(g) is a nonfluctuating quantity, the
implication of Eq. (3a) is that Ab;(q,t) has zero mean.
The average form factor is given by

F(g)=[b(g)]*. 4)

In the absence of fluctuations of the form factor, the
correlation function reduces to the familiar form,

(E*(q,0)E(q,t)) =NF(q)S(q,t) , (5)

where the dynamic structure factor is given by
S(q,t)=i<2Eeiq.[rj(t)—ri(0)1> , ©6)
N\T45

where the angular brackets indicate an average over all
ensembles of scatterers. In the absence of correlation be-
tween particles, the terms with i5=j do not contribute and
Eq. (6) reduces to the self-dynamic structure factor

1 iq-Ary(1)
Ss<q,t>=ﬁ<§e ) , @)
which describes single particle motion.

Including the fluctuations in the form factor, the field
correlation function becomes

(E*(q,0)E(q,t))=NF(q)S(q,t)+NAF(q,t)S;(q,t) ,
(8)

where the second term in the autocorrelation function is
just the time-dependent part of the scattering form factor
multiplied by the self-dynamic structure factor and
reflects the contribution of the shape fluctuations.

In DWS we measure dynamics on short length scales
which typically correspond to short time dynamics. We
can therefore approximate the full and self-dynamic
structure factors by their behavior at short times. We
write [12,14]

1—g2p, 221,

S(g,t)=S(q) S(q)

) 9

where Dy=kyT /6mna is the self-diffusion coefficient of
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an isolated sphere of radius a in a fluid of viscosity 7, and

N iq-Ar..
H(g,t)=——= <i > a-Ar,.(t>a-Ar,<t)e“‘Av>, (10)

2Dyt \ N 72,
which accounts for the hydrodynamic interactions be-
tween the particles. In the absence of correlations, the
self-dynamic structure factor becomes

2
Ss(q,t)=1—96—(Ar2(t)) , (11)

reflecting the mean-square displacement of the particles.
To obtain the average single scattering correlation func-
tion required for the construction of the DWS correlation
function, we must average Eq. (8) over all possible angles.
We transform the average over angles into an integral
over q, obtaining :

(E*(q,0)E(g,1)),
=N[ [F(q)S(q)gdg— [ ¢*F(¢q)H(q)dg Dyt
+ [AF(g,19dq], (12)

where we have ignored the second order small quantity
(q2/6)Ar2(t)AF(q,t), with the assumption AF(q,t)
<<F(q). To calculate gj(z), the contribution to the
DWS correlation function from a path with » scattering
events, we assume that each scattering event is indepen-
dent and take the product of n g-averaged single scatter-
ing correlation functions and normalize by the value at
t=0,

_ (E*(q,0)E(q,1))}

()= . (13)
BT E*(q,00E(4,0)7
Keeping only the first order terms,
fq3F(q)H(q,t)dq
gi)=1—n
[ aF(9)S(q)dg
[ aF(q,00dq— [ qF(qg,t)dg
—n ) (14)

[ aF(@)S(q)dg

where S (q) is the static structure factor, or S(g,t) evalu-
ated at t =0. Equation (14) can be approximated as

[ *F(@H(q,ndg
fF(q)S(q)q dg

gi(t)=expi{i—n

J AF(q,0)gdq— [ AF(q,0)q dg
-n
J F(9)S(q)q dg

’

(15)

since  [¢°F(q)H(q,t)}dg Dot and  [AF(q,t)gdg
<< f F(q)S(q)q dg. This approximation expresses the g-
averaged, n-event scattering field correlation function as
the exponential of a time-dependent function. This is the
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same form that arises in the treatment of systems that
have only translation dynamics. Thus we have incor-
porated amplitude fluctuations in the desired form.

To use the diffusion approximation for light propaga-
tion through the medium, we describe the diffusive step
length [/ of the diffusing light in terms of the transport
mean free path /*, which is defined by [16]

1 2k [aF(g)S(q)dg
ol

= , (16)
[ 4*°F(9)S(q)dg

where k is the wave number of the light in the continu-
ous phase of the emulsion. The number of scattering
events can then be expressed in terms of the path length
normalized by the transport mean free path,
n=(s/1*)(1* /1), where Eq. (16) is used for the factor
1* /1. We introduce the notation

fq3F(q)S(q)dq
fq3F(q)dq

which is the structure factor as averaged in a DWS ex-
periment, and

[ a°F(@)H(q,t)dg
fq3F(q)dq

which is the similarly averaged hydrodynamic interaction
factor. We note here that the DWS average includes a
weighting by ¢*F(q) and strongly emphasizes the high-g
region of both S (q) and H (q,1?).

The DWS g averages are equivalent to averages over
scattering angles. Also F(gq) is proportional to the
differential cross section do,/d{} associated with the
time-averaged particle shape, while AF(q,t) is propor-
tional, via the same constant, to the autocorrelation func-
tion of the fluctuating part of the square root of the cross
section of the fluctuating shape. We therefore define

0o=[F(q)qdq , (19)
Ao()= [AF(q,1)q dg . (20)

[S] (17)

[H] (18)

We shall show that the DWS measurement is sensitive to
the ratio Ao (t)/o; we therefore ignore the common pro-
portionality constant and refer to o, as the equilibrium
total cross section and Ao (?) as the total cross section de-
viation function.

Introducing these definitions into Eq. (15), we express
the correlation function for the field scattered from a
path of length s as

k2

[H1Dyt

gi(t)=exP [— l*[S]

I§  Ac(0)—Ao(t)
zkglo UO

(21)

The first term in the exponent is identical to the expres-
sion obtained in the absence of amplitude fluctuations,
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while the second term reflects the effects of the amplitude
fluctuations. The quantity I§ /I, is defined by Eq. (16)
with S'(q) set equal to 1. It may be interpreted as the ra-
tio of the transport and scattering mean free paths for
light diffusing through a suspension of scatterers among
which there are no spatial correlations, and reflects our
assumption that the shape fluctuations of one droplet are
uncorrelated with those of any other droplet. Thus the
shape fluctuations result in a contribution to the correla-
tion function that adds to the contribution of translation-

J

2k2
o [H]Dyt+

I Ao(0)—Ao(t)
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al motions. The shape fluctuation contribution increases
from zero and saturates at a value proportional to
Ao (0) /o, reflecting the relaxation of deformed shapes.
Because the shape fluctuation contribution is additive, it
competes with the contribution of translational motion;
as a result, it should be observable only if shape deforma-
tions relax in less time than is required for significant
translational motions. The full DWS correlation function
is obtained by summing over all paths, weighted by the
probability P (s) that a photon follows a path of lengths s:

g,(t)= fP(s)exp {—m

We note that the autocorrelation function resembles the
Laplace transform of the probability distribution function
P(s). The quantity P(s) depends explicitly on the shape
and illumination of the scattering cell. We determine it
for any given experimental geometry by solving the
diffusion equation with appropriate boundary conditions
[9,11]. The transport mean free path /* and the DWS-
averaged structure factor [S] can also be measured or
calculated independently of the measurement of g,(¢).
The right side of Eq. (22) is therefore a known function of
the quantity in square brackets. From a tabulation of
this function and the measured value of g, at a given time
t, we are thus able to obtain the value of the quantity in
square brackets at time . We refer to this procedure as
the inversion of the DWS correlation function; this inver-
sion is unrelated to Laplace transform inversion. The
first term in the square brackets describes the contribu-
tion to the correlation decay from the apparent diffusion.
Collective effects in these translational motions are de-
scribed by [H]. For the case of relatively large particles
satisfying R = A, the high-q weighting of the DWS aver-
ages allows us to approximate [H]D,t as {Ar%(t)) /6. In
this case DWS probes the mean-square displacement
(Ar*(t)) [11]. The second term contains the effects of
the amplitude fluctuations. Its prefactor /§ /I, must be
evaluated in the limit of zero volume fraction and has no
volume fraction dependence. It is clear from Eq. (22)
that DWS probes the relative fluctuations of the cross
section. Like ( Ar%(¢)), their contribution to the decay of
g,(t) increases from zero at ¢t =0, but it saturates at long
times, while { Ar%(¢)) and its contribution continue to in-
crease. It is also clear why very small motions can be
detected with DWS: for long paths, s /I* >>1; this large
factor in Eq. (22) allows small values of the quantity in
the square brackets to contribute to the decay of g,(¢).
The signal arises from the sum of a large number of in-
dependent amplitude fluctuations. They would not be
detectable without the advantage of multiple scattering.

We note that the derivation is independent of the na-
ture of the amplitude fluctuations; not only shape fluctua-
tions but other phenomena, such as rotational motion of
aspherical particles, can also result in a similar contribu-
tion.

}ds . (22)

III. DYNAMICS OF SHAPE FLUCTUATIONS
OF EMULSION DROPLETS

The fluctuations in the shape of an emulsion droplet re-
sult from capillary waves on its interface. Their ampli-
tudes are determined by the thermal energy which excites
them and by the interfacial tension I' which controls
them. A change in shape results in an increase of the in-
terfacial area A A, and therefore an increase of the sur-
face potential energy. Since the fluids are incompressible,
the droplet volume remains fixed, and a change in surface
area results in a change in shape. The thermal energy
kpT is much less than the total surface potential energy
TR?, so kzyT~TAR?<<T'R% We must calculate the
fluctuating shape of the droplets due to the thermally ex-
cited capillary waves, and the scattering cross section of
this fluctuating shape.

To calculate the fluctuating shape, we express the sur-
face potential energy as a sum of spherical harmonics and
use the equipartition theorem to assign each mode an en-
ergy of kg T /2. Because of thermal excitation, the liquid
drop has at any instant a nonspherical shape. The sur-
face potential energy E can be written as

2

m T 1| or
= =F 2+_ —_
E=r4 J.0 fo ’ 2 | 36
2
1 or
- sin6dfdgp ,
2sin20 | 3@ | | ¢
23)

where we take the surface tension I" as a constant, by as-
suming the fluctuating amplitude is small so that the
effect of surface dilation on T is negligible. Here A4 is the
surface area of the distorted sphere and 7(8,¢,t) is its in-
stantaneous radius as a function of polar angles 6 and ¢.
We expand 7(6,9,t) in a series of spherical harmonics
Y,,.(6,9)[5,6,17],

Imax m=1

r6,p,t)=ro |1+ 3 3 a,,(0)Y,,(6,9) |, (24)
[=2m=—1

where / =0 and / =1 are excluded because they represent
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a dilation and translation of the drop, and where r is the
zeroth order term in the expansion. Thus the surface en-
ergy is

lmax m=1
E=47Tr} 1+—2 S (=D +1)+2]
T i=2m=—1

Xalmal,_m . (25)

Since the volume is conserved,

41
3

where R is the radius of the undistorted spherical drop-
let. Neglecting higher order terms, we can determine the
first order term, using the constraint of Eq. (26),

1__2 2 A1 ay, —

T l=2m=—1

“IR*= [ [1[r(6,9)Psin0d0dg , (26)

ro —1)m @7

Then, the expression for the potential energy becomes

1 Imax m=]

+2-3 3 [U+D-2]

T 1=2m=—1

E=44TR? 1lay, 12 (28)

Here we have an excess surface free energy because of
shape fluctuations. According to the equipartition prin-
ciple, we take the ensemble average of Eq. (28) and give
each mode an energy of Lk T to obtain the mean-square
amplitude of each mode,

_ kT 1
" TR2IU+1)—2

In the case of an emulsion system, the shape fluctuations
for each mode take place at low Reynolds number, where
convective and inertial terms in the Navier-Stokes equa-
tions can be neglected [18]. The differences in the normal
components of the viscous stresses are balanced by the
Laplace pressure of the deformed surface and the fluid
velocities are continuous. These boundary conditions
determine the relaxation of the deformed droplet to

(lag, 1)

(29)

spherical shape. Thus, in this overdamped limit, the au- -

tocorrelation function of the fluctuating amplitude is
given by

BT Bll'amm —ot

. 30

(a},(0)ap,(t))= TRZIU+1)—2 e , (30
where the decay rate for modes / is given by [19]

o= L2001 +1) T b

2(2124+41+3) R’

In general, w; depends on the viscosities of both fluids
[20]; we have assumed that the viscosity 7 of the interior
is much greater than that of the surrounding fluid. We
note that asymptotically w; ~/, reflecting the fact that the
dynamics are controlled by surface tension; by contrast,
w;~1% when the dynamics are controlled by the interfa-
cial rigidity [17].

To calculate the far field scattering amplitude from
these shape fluctuations, b (g,t), we should use the exact
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Mie scattering theory [21], suitably generalized to treat
nonspherical scatterers. But as a first approximation we
restrict the calculation to the dipole contribution, using
the Rayleigh-Gans (RG) approximation [21]. We recog-
nize that this is not strictly correct, and test the errors in-
troduced by this approximation later. The instantaneous
scattering amplitude b (g,t) can be expressed as

=_1_ iqp’ g3 1
b(g,1) VfVe d’p (32)

where q is the scattering vector, ¥V is the volume of the
scatterer, and the integration vector p’ connects the ori-
gin with a point inside the scatterer. The upper limit p_,,
for its magnitude is just the instantaneous, direction-
dependent radius of the droplet, which we express as a
series expansion of spherical harmonics

=1

max m=—1
PeaB@)=R |1+ 3 3 @, ¥, (6,0) |, (33
1=2 m=l

where we now neglect the distinction between R and rq
and a,,, are expansion coefficients whose autocorrelators
have been determined in Eq. (30).

The plane wave in Eq. (32) can also be expressed as a
series expansion:

elar'cosr =3 (21 +1)i'j,(gp")P)(cosy) , (34)
1=0

where j;(gp’) and P,(cosy) are the Ith order spherical
Bessel function and Legendre polynomial, and ¥ is the
angle between the scattering vector q and the integration
vector p’. Completing the integration of Eq. (32), we ar-
rive at the time-dependent form factor F(q,t) which is
the autocorrelation function of the scattering amplitude

[5]: /
F(q,t)=(b*(g,0)b(g,1))

3j,(qR) |
qR

+-L S @I+ D[3/,(aR) e (0)ay (D) . (35)
4T (=,

A DWS experiment probes the g-averaged form factor.
Thus we integrate Eq. (35) over g, obtaining the total
scattering cross section, apart from a constant prefactor
depending on the relative refractive index which we may
omit since we are concerned with the ratio of the fluc-
tuating and constant parts of the cross section. Apart
from the prefactor, the cross section consists of the con-
stant part o, and the time-dependent part Ac(¢), defined
previously by Egs. (19) and (20). Within the RG approxi-
mation, the explicit expressions are

2
. 3j,(aR)
o= [ "(1+cos?0) | 2= | singdo (36)
and
21 +1
Ao (t)= 417FR2 2 ll+1)_2g,exp( w;t), ((37)

where g; is given by
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g =T fo”<1+cos29)[3j,(qR)]2sinede ) (38)
In Egs. (36) and (38), the scattering wave number is
q =2k, sin(6/2), where k, is the wave number of the in-
cident radiation in the continuous phase of the emulsion.
The factor 1+ cos?@ is appropriate for an unpolarized in-
cident beam [21] and reflects the effect that multiply scat-
tered light is completely depolarized. The coefficients g;
depend only on kyR and express the scattering efficiency
of each deformation mode. They become negligible when
I>>kyR, since the length scale of the features described
by such modes is much smaller than the wavelength of
the radiation. This behavior of g; makes the assignment
of a cutoff mode number unnecessary in Eq. (37), al-
though such a cutoff [ ,, is required in Eq. (25) to avoid a
logarithmic divergence of the surface energy E. Thus, for
a given droplet size and laser wavelength, only a finite
number of modes contribute to the scattering. For exam-
ple, we find that the series converges for / =20 for a 1.4
um diameter droplet and k,=16.3 um~!. Note that
Eqgs. (36) and (37) define oy and Ac(t) as dimensionless
quantities: here we neglect a common prefactor that
differs from the one we neglected in Egs. (19) and (20).
The ratio is, of course, not affected.

Because of the large refractive index mismatch An be-
tween oil and water, the criterion AnkyR <<1 for the va-
lidity of the Rayleigh-Gans approximation does not
strictly hold for an emulsion droplet. Nevertheless, it ap-
pears that the RG theory is sufficiently accurate to de-
scribe our system. We arrive at this conclusion by calcu-
lating with the Mie theory the exact form factor of an un-
deformed sphere and comparing the result with that
found from the RG theory. Thus, a calculation of the
constant part of the total cross section in absolute units
yields 0,=0.995 um? from Mie theory and 0.999 pm?
from RG theory. Moreover, we also use the exact calcu-
lation for spheres in an ad hoc procedure that tests the
accuracy with which the RG theory determines the
scattering power of nonspherical shapes. To accomplish
this, we use identities satisfied by Bessel functions to
rewrite Eq. (38) for the dominant coefficient g,, which de-
scribes the scattering from ellipsoidal deformations, in
terms of the derivative with respect to gR of the form fac-
tor of an undeformed sphere. We then use the Mie
theory to evaluate this form factor and its derivative ex-
actly. We find that the values obtained by this method
and by direct evaluation of Eq. (38) agree to about 10%,
the value directly predicted by the RG theory being the
lower of the two. Thus we conclude that applying the
RG theory to our scattering measurements allows us to
infer the essential behavior of shape fluctuations, with an
uncertainty of about 10%. Hereafter, we use the
Rayleigh-Gans approximation exclusively, since it allows
us to directly evaluate the contribution to the correlation
function due to shape fluctuations through Egs. (31) and
(36)-(38).

IV. EXPERIMENTAL METHOD

Our emulsion samples are three-component suspen-
sions consisting of dispersed oil, continuous water, and
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sodium dodecylsulfate (SDS) surfactant on the interfaces.
The SDS surfactant molecules play two roles in the
emulsification process. First, they lower the interfacial
tension and thereby make it easy to create small droplets.
Second, they stabilize the dispersed droplets against
coalescence once they are formed. Mechanical energy is
added to the three-component system by mixing oil, wa-
ter, and surfactant with a Kitchen Aid mixer. The ratio
of the three components is adjusted to facilitate the for-
mation of emulsions. The peak of the size distribution of
the emulsion droplets can be controlled by varying the
mixing time and the shear rate exerted by the mixer.
Crude emulsions with droplet sizes ranging from 0.1 to 2
pm are first prepared in highly concentrated form. The
polydisperse emulsions are purified with the technique of
fractionated crystallization, which is based on the liquid-
solid phase transition induced by the attractive depletion
interaction. The attractive interaction between the drop-
lets arises from the noncompensated pressure exerted by
surfactant micelles in the suspension. The detailed
purification principles have been summarized in the
literature [22]. By adjusting the micelle concentration we
obtain highly monodisperse emulsions after eight steps of
the purification process. The polydispersity is about 6%
of the average radius, and is sufficiently low that the sam-
ples form colloidal crystals, analogous to hard-sphere
dispersions at appropriate volume fractions [23]. Because
the droplets are deformable, their volume fraction can be
increased to well above hard-sphere close-packing values.
This is accomplished by putting the emulsion in a dialysis
bag, which is immersed in a large reservoir containing
water, sodium dodecyl sulfate detergent (SDS), and a hy-
drophilic polymer, dextran, with molecular weight (MW)
of 500000. Dextran is chosen because the osmotic pres-
sure and surfactant chemical potential can be indepen-
dently controlled in a SDS-dextran-water mixture by
varying the polymer concentration and surfactant con-
centration. The dialysis bag is made of a cellulosic mem-
brane with a MW cutoff of 50000. It is permeable to wa-
ter and surfactant, but impermeable to the oil droplets
and polymer. Thus, taking advantage of the osmotic
pressure, we can increase the volume fraction by pump-
ing the excess water out of the bag. Then the volume
fraction is measured directly by weighing a portion of
sample before and after drying in a vacuum oven, main-
tained at room temperature. The weight fractions are
converted to volume fractions under the assumption that
the density of the droplets is the same as the density of
the bulk oil. This enables us to study the effects of the
volume fraction of the droplets on their shape fluctua-
tions.

The standard experimental setup for DWS in transmis-
sion is used [15]. The beam from an Ar™ laser is focused
on one side of the sample cell containing the emulsion,
and scattered light is collected from the other side. The
Art laser operates in a single longitudinal mode at a
wavelength of 514.5 nm in vacuum. Single mode opera-
tion is essential because our detection system is
sufficiently fast to be able to detect the beats between
neighboring longitudinal modes of the laser, which occur
at 125 MHz. Moreover, operating in a single mode en-
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sures that the coherence length of the light is larger than
the longest diffusive light paths in the sample.

To enable us to study the very fast phenomena of in-
terest, we use a cross-correlation technique. The scat-
tered light is divided into two equal portions and is
detected with two photomultiplier tubes (PMT’s). The
outputs of these are cross correlated. This method
reduces the deleterious effects of afterpulsing in the indi-
vidual PMT’s, which otherwise introduce a spurious
correlation at short times. The cross-correlation tech-
nique also reduces the effects of dead times in the PMT’s
and counting electronics, and, provided that the count
rate in each tube is not too large, allows measurements at
faster time scales.

Our detection optics are optical fibers. We use two
different types, single mode and multimode. In both
cases, the beam splitter is integrated into the fibers, great-
ly simplifying the alignment. The multimode fiber has a
core diameter of 100 um, and standard two-pinhole op-
tics are used to collect the light. A lens is used to image
the fiber face onto the face of the sample and an aperture
at the lens is adjusted to limit the range of scattering vec-
tors collected by the fiber core, which serves as the
second pinhole. In the case of a single mode fiber, the
light is collected by a graded index (GRIN) lens of 0.25
pitch, which is integrated on the fiber cable. The single
mode fiber collects only the light incident on the face of
the GRIN lens which is of a single spatial mode. This ar-
rangement results in a much higher spatial coherence fac-
tor, while maintaining a high light-collecting efficiency
[24]. Moreover, the single mode fiber receiver offers the
possibility of working with an arbitrarily large scattering
volume and with an arbitrary working distance.

Like all forms of dynamic light scattering, a DWS ex-
periments measures the temporal autocorrelation func-
tion of the fluctuations of the scattered light intensity.
The intensity correlation function is related to the field
correlation function through the Siegert relationship

g ()=1+Blg(1)*. (39)

The spatial coherence factor B depends on the number of
coherence areas detected by the optics. The use of the
Siegert relation is justified in DWS because the scattering
volume —essentially the entire sample—is always much
larger than the size of coherent structures within the sys-
tem.

The scattering system here consists of liquid oil drop-
lets dispersed in water. The average radius of the oil
droplets is R =0.7 um. The polydispersity (normalized
rms radius deviation) is about 6%. The index of refrac-
tion of the oil is 1.401; since the refractive index of water
n is 1.33, the system scatters light very strongly. With
the volume fraction above 5% and the sample cell thick-
ness of 4 mm, the high multiple scattering limit can easily
be reached in the transmission geometry. Similar emul-
sions were prepared from oils of two different viscosities,
1n=12 and 1000 cP.

V. EXPERIMENTAL RESULTS

A typical autocorrelation function from the emulsion
with the 12 cP oil is shown in Fig. 1. The data are ob-
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FIG. 1. The square of the normalized field correlation func-
tion |g,(#)|*> as measured by DWS for an emulsion of a low
viscosity oil at volume fraction ¢=0.35. The smooth curve
shows the theoretical behavior of a dispersion of hard spheres.
The deviations of the data from the curve are caused by thermal
shape fluctuations of the emulsion droplets.

tained using an emulsion with ¢$=0.35, and they have
been normalized with the background subtracted, so that
we plot |g1(t)|2. Only the initial decay is shown, to em-
phasize the deviation of the data from the behavior ex-
pected for a suspension of solid spheres at the same
volume fraction. The behavior expected for hard spheres
can be predicted from the measured scaling form [15],
and is shown by the solid line. The data clearly deviate
from the expected behavior; similar deviation is observed
at all volume fractions. By contrast, the correlation func-
tion from an identical emulsion made from 1000 cP oil
does agree very well with the prediction for solid spheres,
as shown in Fig. 2. Moreover, similar good agreement is
observed for initial decay of the correlation function for
all volume fractions of this emulsion up to ¢=0.45.

The origin of the discrepancy is the fluctuations in the
shape of the emulsion droplets. Their relaxation rate
scales with the viscosity of oil; for droplets with higher
viscosity, this relaxation rate is so slow that the decay of
the correlation function is dominated by the translational
motion of the droplets, so the shape fluctuations cannot
be distinguished. By contrast, for the droplets with the
low viscosity, the shape fluctuations relax sufficiently rap-
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0.6 . . .
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FIG. 2. The same as Fig. 1 for an identical emulsion of a
high viscosity oil. Shape fluctuations are no longer visible be-
cause they occur on a longer time scale where dephasing by
translations dominates the decay of |g,()|2.
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idly that they can be clearly distinguished from the
translational motion of the droplets.

To analyze the dynamics of the shape fluctuations, we
invert the DWS intensity autocorrelation function as de-
scribed in Sec. II and so obtain the quantity appearing in
square brackets in Eq. (22). To set the absolute level of
these data, we need to know the transport mean free path
I* and the DWS-averaged structure factor [S]. We evalu-
ate [S] from its definition [Eq. (17)], using the Mie theory
to calculate the scattering form factor F(q) and the ex-
pression for the total static structure factor for hard
spheres S(g,¢) that is obtained with the Percus-Yevick
approximation [25]. The value of /* can, in principle, be
obtained by two independent methods. It can be calcu-
lated from the Mie scattering theory with particle corre-
lations taken into account through the use of a theoreti-
cal structure factor [16]. Alternatively, we can determine
it experimentally by measuring the static transmission
through the sample [9]. The static transmission is pro-
portional to /*; by comparing the measured transmission
with that of a reference sample of identical thickness, and
in the same optical configuration, we obtain the value of
I* relative to that of the reference sample. By using as a
reference sample a hard-sphere suspension of relatively
low volume fraction, we ensure that the reference value
of I* can be calculated with reasonable accuracy. Com-
paring the values we obtain for /* using these two
methods, we assign a 10% experimental uncertainty to
the inverted correlation functions.

The inverted data for the two emulsions are plotted in
Fig. 3, with open symbols used for the emulsion of 1000
cP oil and solid symbols used for the emulsion of 12 cP
oil. The data consist of a sum of a contribution due to
the translational portion, and another contribution due to
the relaxation of the amplitude fluctuations
[Ac(0)—Ao(t)]/o,. Since the droplets are relatively
large, the translational contribution is given directly by
the mean-square displacement (Ar2(z)). As illustrated
in Fig. 3, for the emulsion made of the high viscosity oil,
the inverted data follow the curve predicted for solid
spheres, shown by the solid line. In this case, the theory
includes only the self-translational portion { Ar%(¢)), but
incorporates the consequences of hydrodynamic interac-

10*
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FIG. 3. The data of Figs. 1 and 2 in the inverted form dis-
cussed in the text. The data corresponding to the high viscosity
oil (open circles) are well represented by the theoretical mean-
square displacement {Ar%(¢)) of particles in a hard-sphere
dispersion (smooth curve).
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tions [15]. As probed by dynamic light scattering, the
emulsion of the high viscosity oil is indistinguishable
from a suspension of rigid spheres because here large
translational displacements occur during the much longer
relaxation time for shape fluctuations. The contribution
from the shape fluctuations is therefore negligible in com-
parison with the contribution from translations. By con-
trast, an emulsion made of the lower viscosity oil exhibits
distinct additional dynamics, shown by the solid circles in
Fig. 3. At early times these data fall significantly above
those of the heavy oil and those expected for solid
spheres; at later times the data merge with the purely
translational dynamics.

To investigate the relaxation of shape fluctuations
more clearly, we separate the contributions of transla-
tional motion and shape fluctuations by subtracting the
mean-square displacement from the inverted data. We
can do this subtraction because the mean-square displace-
ment can be calculated accurately: the prediffusional
Brownian motion of an isolated particle has been calcu-
lated theoretically [26], while measurements performed
on rigid hard spheres have established a scaling of the
theory with volume fraction that accounts for interac-
tions [13—15]. We plot R2Ao(t)/o, for $=0.35 on a
log-linear scale in Fig. 4; we multiply the normalized
cross section deviation function Ao (t)/o, by R? since by
doing so we obtain a quantity closely related to the auto-
correlation function of fluctuations of the droplet radius.
To establish this connection, we introduce here the radius
correlation function of a fluctuating droplet using Egs.
(24) and (30),

+— [([rO—R][r(n—RDdO

_ kTl 9141
4nT 211 +1)—2

exp(—aw;t) . (40)

Comparing Egs. (37) and (40), we see that the difference
between the radius correlation function and R*Ac(2)/0,
is just the appearance in the latter of the coefficients
g, /0, which characterize the scattering strength of each
deformation mode relative to the scattering strength of
the undeformed sphere. Hereafter we will call
R?Ao(t)/0, the shape fluctuation correlation function.
It is the radius correlation function when the contribu-
tions of the deformation modes are taken with a scattered
intensity weighting.

The curves shown in Fig. 4 have been calculated from
Egs. (36)—(38) together with overall rescalings of the am-
plitude and time scale, to be described below. For the
dashed curve, we include only the first term, / =2, in the
sum over deformation modes, resulting in a purely ex-
ponential decay. Comparison of this curve with the data
makes evident the distinctly nonexponential relaxation of
shape fluctuations. However, we obtain excellent agree-
ment with the data when we include more modes, up to
I max =17 (solid line). In a practical sense, the mode sum
converges and the computed curve is insensitive to the
value of /,,, provided it is chosen larger than 10. On the
other hand, the fit to the data is noticeably poorer if we
choose I, =5 or less, indicating that higher order defor-
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FIG. 4. Shape fluctuation correlation function of droplets in
an emulsion of low viscosity oil at volume fraction ¢=0.35.
The smooth curve is the theoretical prediction [Egs. (36—38)],
together with scalings of the amplitude and characteristic relax-
ation time as defined in the text. The dashed curve is the contri-
bution from the dominant (/ =2) mode alone.

mation modes contribute significantly.

In Fig. 5 we show logarithmic plots of the shape fluc-
tuation correlation functions R?Aco(t)/0, measured with
emulsions whose droplet volume fractions cover the
range 0.07 < ¢ <0.55. The amplitudes of the shape fluc-
tuations increase with ¢. Figure 5 also shows the shape
fluctuation correlation function of an isolated droplet as
predicted by the theory without adjustments of any kind.
The data appear to fall on curves which differ from the
theoretical curve only by ¢-dependent vertical and hor-
izontal shifts. This surprising scaling behavior indicates
that the relative strength and relaxation rates of the de-
formation modes of interacting droplets are the same as
those of an isolated droplet. To test this suggestion, for
each data set we scale the theoretical curve by treating as
¢ dependent two fitting parameters. These are the ampli-
tude of the correlation function R?Ac(t=0;¢)/0,, and
the overall factor w(¢) that applies to the I-dependent
mode relaxation rates ;. By comparison, the prediction
of the theory for these parameters, for ¢ =0, is

2 —0) b= kg T o
R’Ao(t=0;6=0) _ Kk g 2A+1 a2
gq 4mToy 2,7 11 +1)—2

41)
and
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FIG. 5. Shape fluctuation correlation functions of droplets in
emulsions covering a range of volume fractions. The smooth
curve is the prediction of the theory without scalings.

(36)—-(38) as ¢ approaches zero: the extrapolation of the
fitted w(¢4) to ¢ =0 gives a value identical to the predicted
value of 1.2X10% sec™!. Similarly the extrapolated value
of the amplitude R*Ao(1=0;¢=0)/0, is 70 A% The
discrepancy with the predicted value 52 A? may reflect
the error introduced by the Rayleigh-Gans approxima-
tion, the error in our values for the scattering and trans-
port mean free paths / and /*, or the error incurred by
our simple linear extrapolation of the amplitude—volume
fraction relation defined by our two least concentrated
samples.

To examine the ¢ dependence of shape fluctuations, we
plot in Fig. 7 the relaxation rate scaling function w(¢),
normalized by its theoretical value at ¢=0, 1.2Xx10°
sec”!. The normalized scaling function is well represent-
ed by w(¢)/w(0)=1—0.78¢. The ¢ dependence is rela-
tively weak in the sense that there is no sign of the shape
deformation relaxation rate extrapolating to zero as the
volume fraction increases toward ¢~0.63, the value of
random close packing of spheres, which is the limiting
value for packing undeformed spheres; above this value,
the droplets must be permanently deformed in order to
pack together. The ¢ dependence is also linear, despite
the high concentrations. Nevertheless, the behavior of
the relaxation rate may be indirectly related to the ¢
dependence of the effective viscosity of the emulsion,
even though ‘the latter is strongly nonlinear over the
volume fraction range our measurements cover. A simi-
lar linear form for the shape relaxation rate was recently
predicted for the / =2 modes as part of a theory for the
nonlinear ¢ dependence of the effective viscosity of a non-
dilute suspension of deformable droplets [27]. The pre-
dicted coefficient was 1.4, larger than the value 0.78
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FIG. 6. The data of Fig. 5 in scaled form. The measured
shape fluctuation correlation functions of interacting droplets

collapse to a universal curve which is identical to the curve pre-
dicted by the theory of an isolated droplet.
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FIG. 7. The characteristic relaxation rate w(¢), reduced by
its theoretical value w(0), as a function of volume fraction ¢.
The data extrapolate to 1.0 as ¢ approaches zero, indicating the
agreement of the measurements with the theory in the limit of
isolated droplets. The smooth curve is an empirical linear fit.

which we obtain; however, this theory was restricted to
the case of equal viscosities of the oil and water. In our
experimental system, the droplet viscosity is an order of
magnitude higher than the viscosity of the solvent. Since
under these conditions the relaxation rate of the shape
fluctuations of an isolated droplet is less sensitive to the
viscosity of the solvent, it is plausible that the effects of
the solvent-mediated interactions considered by the
theory are less effective as well.

The ¢ dependence of the amplitude of the fluctuations
exhibits different behavior. We show this in Fig. 8, where
we plot the shape correlation function amplitude
R2Ao(t= 0;¢)/0, normalized by the theoretical value at
¢=0,52 A% we designate the normalized amplitude
more compactly by Aoc(¢)/Ao(0). The data increase
sharply, by a factor of about 2 at higher volume fractions.
This increase in the amplitude of the shape fluctuations
with ¢ is very surprising. It suggests that the energy
driving shape fluctuations increases as ¢ increases. A
possible source for this extra energy is the energy of
translational motion, which may couple to shape fluctua-
tions through collisions of the droplets. According to
this view, we attribute the strong nonlinear increase of
the amplitude of shape fluctuations to the rapid increase
of the frequency of collisions as the system becomes
denser. The probability of two droplets colliding should
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¢

FIG. 8. The amplitude of the shape fluctuation correlation
function, reduced by its theoretical value, as a function of
volume fraction ¢. The smooth curve is a fit to a simple model
that attributes the amplitude dependence to collisions.
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scale with the number of pairs of droplets touching one
another, which is given by ¢g(2,¢), where g(2,¢) is the
pair correlation function evaluated at the contact dis-
tance 2R. This suggests a functional form for the nor-
malized shape fluctuation amplitude Ac(¢)/Ac(0)
=1+C¢g(2,4¢). The expression assigns extra deforma-
tion to those droplets that are in contact with one or
more neighbors; the fraction these colliding drops make
out of the total number of drops is proportional to
¢g(2,4). We treat C as adjustable and use the
Carnahan-Starling equation of state for hard spheres,
g(2,6)=(1—¢/2)/(1—¢)* [28]. The fit with C=0.2 is
shown in Fig. 8 as the smooth curve. We obtain good
agreement with the measured shape fluctuation ampli-
tudes. We emphasize, however, that while this model
gives reasonable agreement with data, it is nevertheless
only a crude approximation. In particular, very recent
work by Cai suggests that our expression is fundamental-
ly wrong at low volume fraction [29]. Thus, whereas our
expression gives C as the coefficient for the linear term in
an expansion of Ao (¢)/Ac(0) in powers of ¢, Cai’s ana-
lytic calculation of this first coefficient gives
3kyT/2aTR?~4X10"7. At higher 4, however, our
data and our model expression do agree qualitatively with
Cai’s two-dimensional simulation of droplet shape fluc-
tuations. Another possibility is that the shapes of neigh-
boring droplets may fluctuate in a correlated way at
higher ¢. In that case, the measured Ao (¢)/Ac(0) may
reflect the effects of spatially correlated amplitude fluc-
tuations whose existence was ignored in deriving Eq. (22).
Alternatively, it is also possible that the translational
motion of the liquid droplets differs in some way from
that of hard spheres, contrary to what we assumed in iso-
lating the contribution of the shape fluctuations. This
could also have the effect of modifying the measured am-
plitude at higher ¢.

All of the data discussed to this point involved emul-
sions whose volume fractions were well below the limit of
random close packing, and thus possessed liquidlike
translational dynamics. However, since droplets are de-
formable, we can prepare emulsions with much higher
volume fractions; then their translational motion is
arrested, much like a colloidal glass. Nevertheless, we
continue to see in DWS measurements an early decay on
a time scale that seems to evolve continuously from the
time scale of the shape fluctuations of droplets in less
concentrated emulsions. We illustrate this behavior in
Fig. 9, where we plot the inverted correlation functions
for a series of volume fractions of the emulsion made
from the oil with the lower viscosity of 12 cP. At low
volume fractions, the shape fluctuations are clearly dis-
tinguished from the translational motion as an early-time
region of lower slope on the logarithmic plots of the in-
verted correlation functions. Here, the translational
motion persists after the shape fluctuations have decayed,
reflecting the diffusive motion of the droplets. By con-
trast, as ¢ is increased, the translational motion is
depressed at longer times; for ¢=0.65 and above, it is
fully arrested, suggesting that all the remaining dynamics
result solely from the shape fluctuations. We cannot give
a full analysis of these measurements. A starting point
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FIG. 9. Inverted DWS correlation functions from a series of
dense and compressed emulsions of low viscosity oil. At
¢=0.55, translational motions are still evident as an increase of
the slope of the correlation function on a logarithmic plot.
Translations are arrested in highly compressed emulsions and
the increase does not occur. The early-time behavior of the
correlation functions is similar, however, which suggests that
shape fluctuations are present in highly compressed emulsions.

for understanding compressed emulsions, however, is fur-
nished by the example of the colloidal glass of rigid
spheres [30]. At and above the glass transition, this sys-
tem becomes nonergodic, so that the decay of the proper-
ly averaged autocorrelation function saturates at a finite
value [31]. The cause of this saturation is the arrest of
translational motions: particles do not execute displace-
ments past some maximum value. Therefore, in
compressed emulsions, shape fluctuations can remain
significant in comparison with translations for longer
times. In fact, when the translational motion is com-
pletely arrested at high ¢, even the more slowly relaxing
shape fluctuations of droplets of high viscosity oils can be
resolved. Thus, we can obtain some idea of the separate
contributions of shape fluctuations and translations to the
dynamics of compressed emulsions by studying the effect
of the oil viscosity. Shown in Fig. 10 are the measured
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FIG. 10. The square of the field correlation function ob-
tained from highly compressed emulsions of low and high
viscosity oils. The correlation functions decay to a plateau that
is independent of viscosity, while the time scale of the decay in-
creases with viscosity.
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intensity autocorrelation functions obtained from two
emulsions with ¢ =80%. The solid symbols are the data
for an emulsion of 12 cP oil, while the open symbols are
for one of 1000 cP oil. Both sets of data exhibit a decay
to the same absolute level, but the characteristic times
are markedly different. Although only the initial decay is
shown in Fig. 10, at longer times both sets of data decay
fully, presumably due to slow relaxations of droplet
configurations. Thus the measured correlation functions
are automatically obtained with the proper ergodic
averaging [31]. The inverted data are shown in Fig. 11,
where the solid and open symbols again represent the
data for the 12 and 1000 cP oils, respectively. The two
sets of data saturate at the same final value, but the
characteristic relaxation time for the emulsion of the less
viscous oil is somewhat more than one order of magni-
tude shorter than that of the emulsion of the more
viscous oil. The ratio of the two relaxation times is sub-
stantially less than the ratio of the viscosities, however,
that would be expected from the viscosity dependence of
the characteristic relaxation times of isolated droplets.
The observed deviation from the expected behavior indi-
cates that the shape fluctuation relaxation rate in a highly
compressed emulsion is not controlled solely by the
viscosity of the oil, and, instead, additional effects also
contribute.

Finally, the fact that the saturation value of the decay
of the correlation function is completely independent of
viscosity indicates that it does not depend on the dynam-
ics. Instead, it presumably relates to the effects of elasti-
city of these concentrated emulsions; the elastic modulus
is in fact found to be independent of the viscosity of the
oil [32]. Moreover, the ¢ dependence of the saturation
level tracks that of elastic modulus [32]. This demon-
strates the intrinsic relationship between the shape fluc-
tuations of the droplets and the macroscopic properties
of the emulsion.

VI. CONCLUSIONS

In this paper we have generalized the theory of
diffusing-wave spectroscopy by incorporating the effects
of amplitude fluctuations in the scattering intensity. The
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FIG. 11. The data of Fig. 10 in inverted form.
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formulas we derived can be applied to study dynamic
phenomena in which the form factor is time dependent,
and the amplitude fluctuations of the scattered light
reflect the dynamics of the shape, size, or rotation of
scatterers. The detection of these fluctuations makes
DWS a more generally useful and applicable technique.
We apply this method to the study of thermally induced
shape fluctuations of emulsion droplets whose geometry
is controlled by surface tension. Since the surface poten-
tial energy of a droplet is much higher than k3T, the de-
formation of a drop induced by the thermal energy is
only a small fraction of its size. This deformation would
not be detectable using conventional dynamic light
scattering because of its small amplitude and fast relaxa-
tion. However, it is feasible using DWS, since the decay
of the correlation function results from the combined
fluctuations of the large number of scatterers that
comprise the scattering path, allowing minute changes in
each individual scatterer to be detected. Here, we are
able to probe changes in the shapes of the scatterers cor-
responding to length scales as short as a few angstroms.
From our generalization of the theory for DWS we iso-
late the contribution of the shape fluctuations and investi-
gate the ¢ dependence of the characteristic relaxation
rate and amplitude of the fluctuations. Very good agree-
ment is obtained between the theory of an isolated drop-
let and experimental values at low volume fractions. The
relaxation behavior exhibits a distinctly nonexponential
decay. We conclude that in addition to the lowest mode
(I =2) higher order fluctuating modes are excited and re-
lax with shorter time constants. However, we found a re-
markable scaling behavior of the relaxation process over
volume fraction. All data can be scaled onto the correla-
tion function predicted for the shape relaxation of an iso-
lated droplet. Upon extrapolating the scaling functions
to =0, excellent agreement with the theoretically pre-
dicted amplitude and characteristic relaxation rate is ob-
served. The characteristic relaxation rate exhibits a
linear decrease with volume fraction, while the amplitude
of the shape fluctuations shows a nonlinear increase. We
speculate that the ¢ dependence of the amplitude of the
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shape fluctuations is a consequence of collisions and the
additional energy transferred from interparticle interac-
tion into the interfacial degrees of freedom. We account
for these collisions by relating the ¢-dependent shape
fluctuation amplitude to the radial distribution function
at contact. The rapid increase of collisions with volume
fraction results in a strong, nonlinear increase in the am-
plitude of shape fluctuations. However, to fully account
for the ¢ dependence, further theoretical work is clearly
required; for example, recent computer simulations also
exhibit similar behavior [29].

The flexibility of liquid droplets is one of their most
distinguishing features; it controls many of their unique
properties. The shape fluctuations studied here directly
probe this flexibility. Moreover, as the volume fraction
increases, shape fluctuations can lead to significant
modifications of the properties of the interacting drop-
lets. In particular, these shape fluctuations may make a
significant contribution to the onset of an elastic
modulus, which occurs as ¢ is increased sufficiently to de-
form the droplets permanently. The effects of increasing
interactions on the shape fluctuations may provide new
insight into this important problem. Another important
issue is the potential connection between coalescence and
shape fluctuations of emulsion droplets. In order to in-
duce coalescence, rupture of the liquid film between the
droplets must take place. The rupture of the thin film is
usually due to thermal or mechanical fluctuations which
result in the stretching of the liquid surface and the for-
mation of surface waves that grow in amplitude until
coalescence occurs. Thus the techniques reported here
may provide a method for probing the stability of emul-
sions; shape fluctuations may be a critical precursor of
coalescence, one of the key mechanisms by which an
emulsion is destroyed.
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